Exon junction complexes mediate the enhancing effect of splicing on mRNA expression.

نویسندگان

  • Heather L Wiegand
  • Shihua Lu
  • Bryan R Cullen
چکیده

Intron-containing genes are generally expressed more effectively in human cells than are intronless versions of the same gene. We have asked whether this effect is due directly to splicing or instead reflects the action of components of the exon junction complex (EJC) that is assembled at splice junctions after splicing is completed. Here, we show that intron removal does not enhance gene expression if EJC formation is blocked. Conversely, RNA tethering of the EJC components SRm160 or RNPS1 boosts the expression of intronless mRNAs but not of spliced mRNAs. Splicing and RNPS1 tethering are shown to enhance the same steps in mRNA biogenesis and function, including mRNA 3' end processing and translation. Together, these data argue that the EJC is primarily responsible for the positive effect of splicing on gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CWC22-dependent pre-mRNA splicing and eIF4A3 binding enables global deposition of exon junction complexes

In metazoan cells, spliced mRNAs are marked by the exon junction complex (EJC), a multi-protein complex that serves as a key regulator of post-transcriptional mRNA metabolism. Deposition of EJCs on mRNA is intimately linked to the splicing process. The spliceosomal protein CWC22 directly binds the core EJC-protein eIF4A3, guides it to the spliceosome and initiates EJC assembly. In addition, CWC...

متن کامل

New insights into the formation of active nonsense-mediated decay complexes.

In the nonsense-mediated mRNA decay (NMD) pathway, an exon-junction protein complex (EJC) and hUpf proteins mediate rapid downregulation of aberrant mRNAs that terminate translation upstream of the last splice junction. Two EJC subunits, Y14 and RNPS1, have been proposed to act as a link between splicing and NMD by recruiting hUpf3 and the other hUpf proteins. New studies now present evidence t...

متن کامل

Specific Y14 domains mediate its nucleo-cytoplasmic shuttling and association with spliced mRNA

Pre-mRNA splicing deposits multi-protein complexes, termed exon junction complexes (EJCs), on mRNAs near exon-exon junctions. The core of EJC consists of four proteins, eIF4AIII, MLN51, Y14 and Magoh. Y14 is a nuclear protein that can shuttle between the nucleus and the cytoplasm, and binds specifically to Magoh. Here we delineate a Y14 nuclear localization signal that also confers its nuclear ...

متن کامل

Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex.

Nonsense-mediated messenger RNA (mRNA) decay, or NMD, is a critical process of selective degradation of mRNAs that contain premature stop codons. NMD depends on both pre-mRNA splicing and translation, and it requires recognition of the position of stop codons relative to exon-exon junctions. A key factor in NMD is hUpf3, a mostly nuclear protein that shuttles between the nucleus and cytoplasm a...

متن کامل

A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs.

The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 20  شماره 

صفحات  -

تاریخ انتشار 2003